If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2-8t-11=0
a = 5; b = -8; c = -11;
Δ = b2-4ac
Δ = -82-4·5·(-11)
Δ = 284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{284}=\sqrt{4*71}=\sqrt{4}*\sqrt{71}=2\sqrt{71}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{71}}{2*5}=\frac{8-2\sqrt{71}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{71}}{2*5}=\frac{8+2\sqrt{71}}{10} $
| -(7n-4)=-3n+20 | | 8+2x=4x-2 | | 10z+3=10 | | -2b-38=2(b-3) | | 32=2x-3+x+8 | | 4(g+6)-2=70 | | 6x+11=2x-11 | | 65=3x-2+6x-5 | | 180=x+28+(x+70) | | 5n-4=2(4n+1) | | 40x+45x=4 | | 1+8x=8+8x | | 28+x=-38 | | -4+f/5=10 | | 4(8x+7)-x=0 | | 4(x+2)+6x=38 | | 33+x=-53 | | -18g+7=-39g | | 1+8a=15+6a | | 7x-28=2x-28+5x | | (0.7a^2-1.8a+1.4)-(5.6a^2-1.2a+3.7)= | | 5x22=113 | | 100d=13.71d= | | 10c=13.71c= | | b+2.01=5.5b= | | X^2+3x=94 | | a+5.7=15 | | 6-5(=3-2n) | | (x-7)/2=42 | | -58+x=22 | | 4x+14=2x-20 | | (x-7)/2=19.32 |